
APPROACH TO ANEMIA

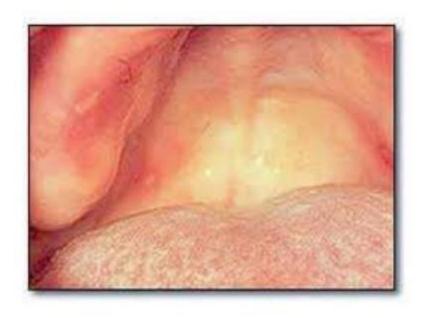
ERYTHROPOESIS

WHO Definition :

Anaemia is a condition in which the number of red blood cells (and consequently their oxygen-carrying capacity) is insufficient to meet the body's physiologic needs.

- Classical symptoms :
 - Fatigue, Malaise
 - Dyspnoea on exertion
 - Loss of stamina
 - Palpitations
 - Complaints related to Exertion
 - Reduced exercise capacity
 - Pounding sensation in ears
 - Night swoats

- Symptoms suggestive of Nutritional anemia :
 - Blood in stools
 - Loose stools/ Clay colour stools
 - Constipation
 - Blood in urine
 - Pregnancy
 - Recurrent/Recent foetal loss
 - History of Neural Tube Defects in offspring
 - Cleft palate/lip in offspring


- Symptoms of Haemolysis :
 - Yellowish discoloration of eyes and skin
 - Reversible skin pigmentation
- Symptoms suggestive of marrow disorders :
 - Recurrent upper respiratory tract infections
 - Episodic jaundice/ abdominal pain/ lumbar pain/ hematuria
 - Easy bruising/ Gum bleed/ Nose bleed/ Heavy menstrual flow/ Hemiparesis/ Vision loss

- Symptoms suggestive of genetic disorders :
 - Early hair greying
 - Short stature
 - Dystrophic nails

- Past History :
 - Blood donation history
 - Phlebotomy history
 - During I light a min

- O/e :
 - Mental state
 - Signs of dehydration
 - Cheilosis (Fissures at corners of mouth)
 - Koilonychia (Spooning of finger nails)
 - Pallor (< 8-9 gm/dL)
 - Mucus membranes
 - Palpebral conjunctiva

- Icterus
- Clubbing
- Cyanosis
- Lymphdenopathy
- Pedal edema
- Petechiae/ Ecchymosis
- Systemic Examination :
 - Splenomegaly
 - Hepatomegaly
 - Forcoful Hoart hoat

- Also Look for :
 - Ascites
 - Heart failure
 - Cirrhosis
 - Endocrinopathies
 - Pseudoxanthoma elasticum

- Complete Blood counts
 - Hb :

Occasion	Normal Value (mg/dL)
At Birth	17
Childhood	12
Adolescence	13
Adult Man	16 ± 2

– Hematocrit :

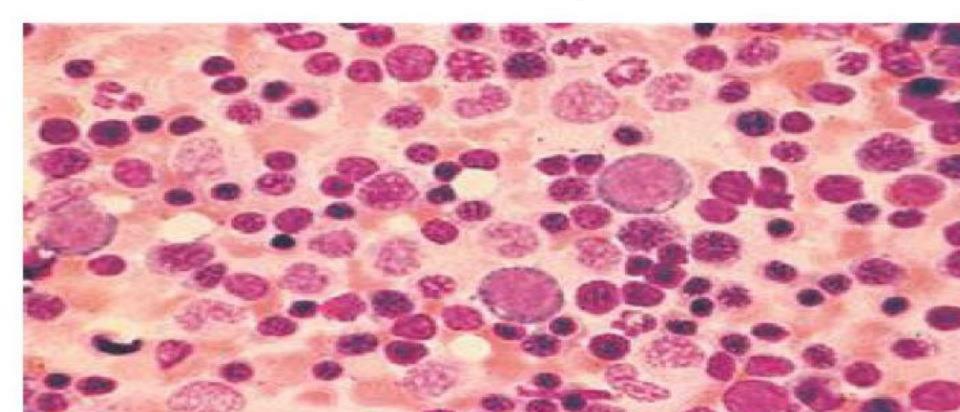
	Normal Values (%)
Adult Male	47 ± 5
Adult Female	42 ± 5

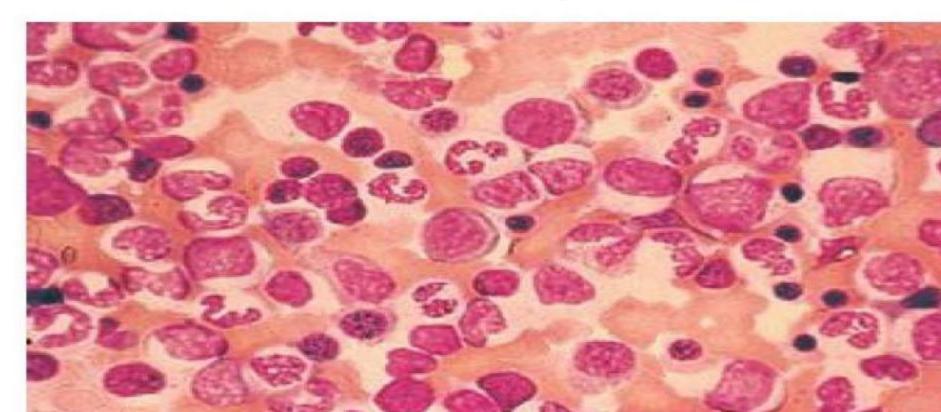
- Reticulocyte Count
- Absolute reticulocyte Count

사이었다. 방법에서는 일을 만에 사이었다. 방법에 생겨에서 것을 알는 것

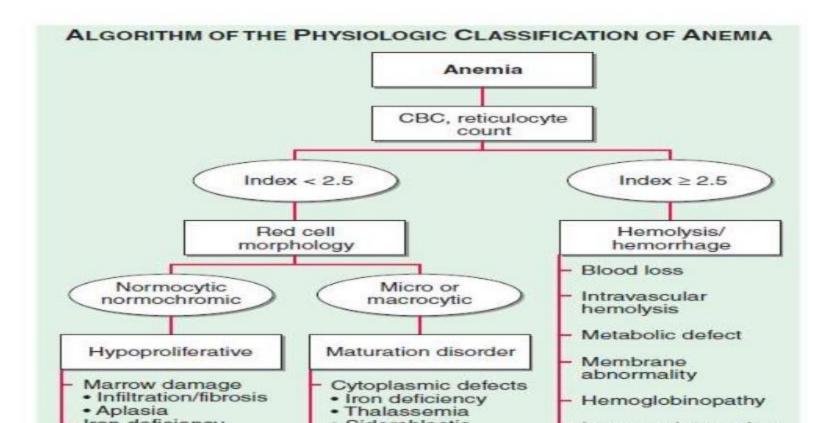
RBC Indices

Indices	Normal
MCV	90 ± 8 fL
MCH	30 ± 3 pg
MCHC	33 ± 2 %
RDW	11.5 – 14.5 %

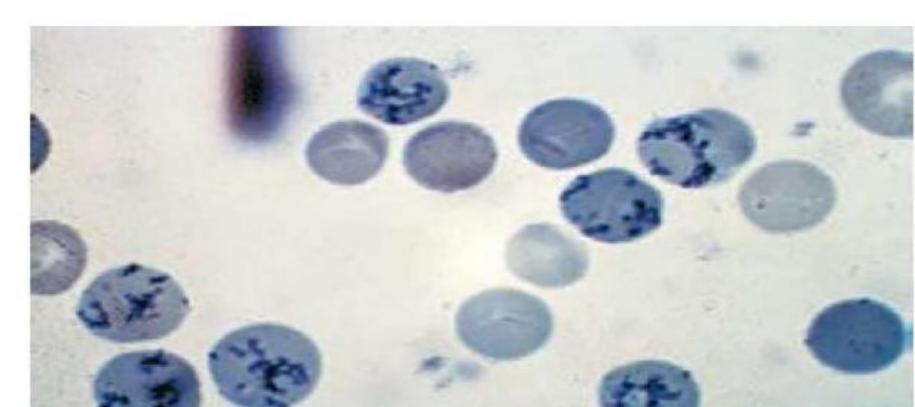

- Other Counts
 - TLC


- Red cell Morphology
 - Cell size
 - Mirocytic (<80 fL)
 - Macrocytic (>100 fL)
 - Anisocytosis (Variable size)
 - Poikilocytosis (Variable Shape)
 - Polychromasia
 - » (Slightly larger than normal cells, greyish blue in Wright Giemsa stain

Iron Studies


Study	Normal Range
Serum Iron	50-150 μg/dL
TIBC	300-360 μg/dL
Serum Ferritin	Males – 100 μg/ L Females – 30 μg/ L
Transferrin Saturation	25-50 %

- Marrow Examination
 - Aspirate :
 - M/E ratio (1:1)
 - Cell Morphology
 - Iron Stain
 - Biopsy
 - Cellularity (1:1)
 - Morphology
- Signs of Hemolysis


Clinical Classification of Anaemia

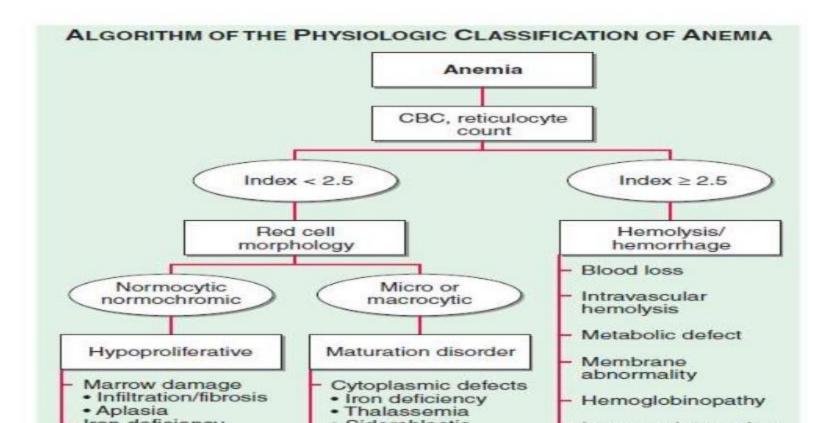
Reticulocyte Count

- By Supra vital stains Blue, black punctate spots (precipitated rRNA)
- Life 24 to 36 hrs
- Normal range 1-2%
- Daily replacement 0.8 to 1%
- Response depends on

Reticulocyte count

Reticulocyte count

Correction for Anemia


- Absolute Reticulocyte count =

reticulocyte count x Hb/15 or Hmt/45

 Correction for prematurely released reticulocytes (only when you see 'shift' cells)

Reticulocyte Production Index -

Clinical Classification of Anaemia

Hypo-proliferative Anemia

- Causes :
 - Mild to Moderate Anemia
 - Marrow Damage
 - Inadequate EPO stimulation
 - Inflammation (IL -1, TNF α , etc..)
 - Metabolic Disorders (Hypothyrodism, ..)
 - Renal Failure (in DM & Myeloma marked EPO def seen than actual failure)

Hypoproliferative Anemia

Parameter	Mild – Mod Iron Def	Chr. Inflammation
S.Iron	\checkmark	\checkmark
TIBC	$\frown \uparrow$	↓/N
% Saturation	\checkmark	\checkmark

Maturation Disorder

BM shows erythroid hyperplasia (M/E < 1:1)
 But fails to release into peripheral circulation

Nuclear maturation	on defects	Cytoplasmic maturation defects
Macrocytosis		Microcytic, Hypochromic
Vit B12/ Folate De	eficiency	Severe Iron Deficiency
Drugs (Methotrey	kate/Alkylating agents/	Globin chain/Heme synth Defects

Blood Loss

Normocytic/ Slightly Macrocytic

- No Increase in RPI
- Signs of

Sub Acute Blood Loss

 Modest Reticulocytosis Chronic Blood Loss

 Iron Deficiency picture dominates

Intra Vascular

(Iron loss may limit the Marrow response)

Acute

(Autoimmune hemolysis/ Pathway defects)

Hemolysis

Estus Massilan

Chanania

- C/f :
- Pregnancy/ Adolescence/ Blood Loss/ Phlebotomy
- Advanced tissue iron def
 - » Cheilosis
 - » Koilonychia

In adult male – GI loss, until proven otherwise

- RBC Indices
 - Microcytic, Hypochromic, Aniso-Poikilocytosis
- Iron Studies
- Marrow Iron (Normal : 20-40% sideroblasts, with ferritin granules)
 - Decreases

DD for Microcytic Anemia

Tests	Iron Deficiency	Inflammation	Thalassemia	Sideroblastic Anemia
Smear	Micro/hypo	Normal micro/hypo	Micro/hypo with targeting	Variable
Serum iron (µg/dL)	<30	<50	Normal to high	Normal to high
TIBC (µg/dL)	>360	300	Normal	Normal
Percent saturation	(10)	10-20	30–80	3080
Ferritin (µg/L)	<15	30-200	50-300	50-300

RX

Red cell infusion

(Symptomatic/ CV instability/ Elder/ Continued blood loss)

Oral Iron

(Young/ Asymptomatic)

G6PD Deficiency

- Asymptomatic
- Classical :
 - Malaise, weakness, abd & lumbar pain
 - In 3 days
 - Jaundice & dark urine
- Primaquine mass prophylaxis is a danger
- Blood :
 - Normocytic Normochromic (Mod to Severe)

- Oral Iron:
 - 200mg elemental Iron/day
 - Absorption will be upto 50mg/d (with good retention capacity)
 - Supports 2-3x production
 - Add Ascorbic acid for increased absorption (if cost effective)
 - 3 1 tabs/day for 6 12 months

Iron Deficiency Anemia

Iron Tolerance test

- 2 Iron tabs on empty stomach
- Serial S.Iron for 2 hrs
- At least 100 mcg/dL increase

Preparation	Amount (Elemental Iron)
Ferrous sulphate	325 (65)

Iron Deficiency Anemia

Parenteral Iron :

Needed = { Body wt in Kg x 2.3 x (15 – pt. Hb)} + 500-1000mg for stores

500mg at a time/ repeated small doses

Preparation	Amount of Iron per injection
Sodium ferric gloconate	125 mg

- Iron restricted erythropoesis with inflammation.
 - IL 1 -> INF ^γ
 - TNF α -> INF β
 - Suppresses EPO
- Mixed blood picture
 - Inflammatory component (Normocytic Normochromic)

TABLE 126-6 DIAGNOSIS OF HYPOPROLIFERATIVE ANEMIAS				
Tests	Iron Deficiency	Inflammation	Renal Disease	Hypometabolic States
Anemia	Mild to severe	Mild	Mild to severe	Mild
MCV (fL)	60-90	80-90	90	90
Morphology	Normo-microcytic	Normocytic	Normocytic	Normocytic
SI (µg/dL)	<30	<50	Normal	Normal
TIBC (µg/dL)	>360	<300	Normal	Normal
Saturation (%)	<10	10-70	Normal	Normal

- Rx :
 - Transfusion : symptomatic/ terminal disease
 - Wait up to 7-8 g/dL
 - If compromised, maintain at 11 g/dL
 - Liberal use in ICU leads to 个 morbidity & mortality

 – EPO : Glycoprotein, from peritubular capillary cells in kidney & hepatocytes, regulated by HIF 1 α

- Recombinant EPO therapy :
 - Check for iron stores
 - 50-150 U/kg 3 times/week IV
 - Up to 300 U/kg, (in chemo induced anemia)
 - 10-12 g/dL Hb in 4-6 weeks
 - Stop if acute inf/ iron depletion/ Al toxicity/ hyperpaarthyroidism

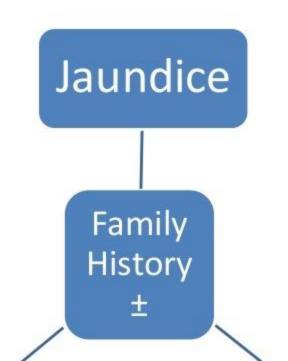
Megaloblastic	Megaloblastoid
Immature appearing nuclei with large blast like cells with normal hemoglobinisation.	Immature appearing nuclei with defective hemoglobinisation.
Seen in B12/Folate deficiency.	Seen in Myelodysplasia.

CLINICAL FEATURES

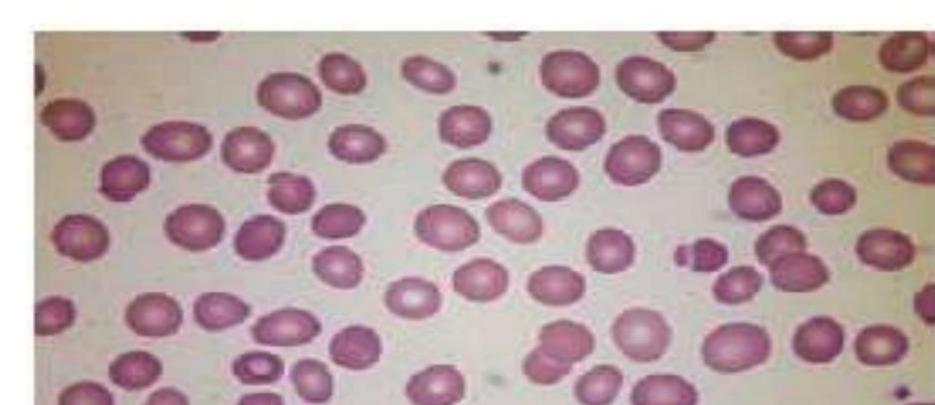
Anorexia, Wt. loss, Diarrohea/ constipation, Mild fever

Tissue effects	Hematological effects	
Mucosal damage	Macrocytsis	

B12 deficiency	Folate Deficiency
S.Cobalamin <100 ng/L	S. Folate < 2µg/L ↑ - severe B12 def & Intestinal stagnant loop synd
S. MMA & Homocystein – Increases	S. MMA & Homocystein – Increases
B12 absorption tests are obsolete S. Gastrin ↑ S. Pepsinogen I ↓ (fee Demisions Associa)	RBC Folate < 160 µg/L False + in Recent transfusion/ 个Retic count



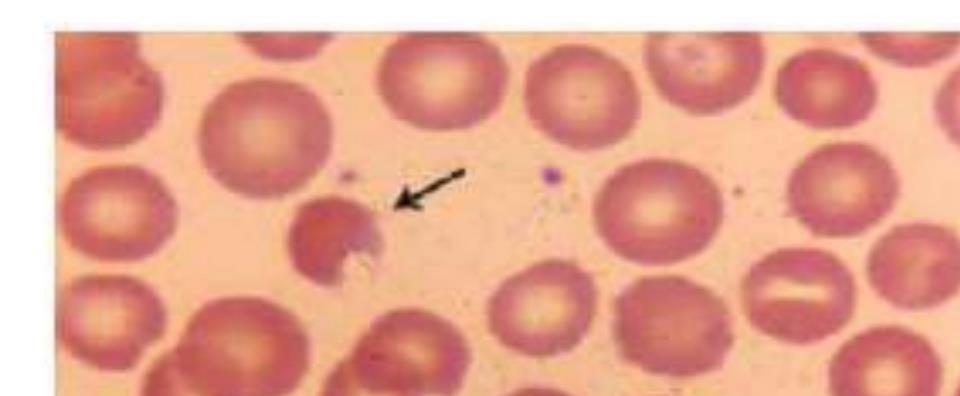
- Rx :
 - Treat appropriate vitamin only (always B12 first)
 - Transfusion is usually unnecessary & inadvisable


B12 deficiency	Folate deficiency
Hydroxy/ cyano cobalamine life long therapy is best	Oral 5-15 mg/ day
Routinue in GIT resections/ longterm I therapy	PPI For 4 months
Always low threshold for therapy	

Hemolytic Anemias

Mild : Young adult/ adult

Severe : Infancy

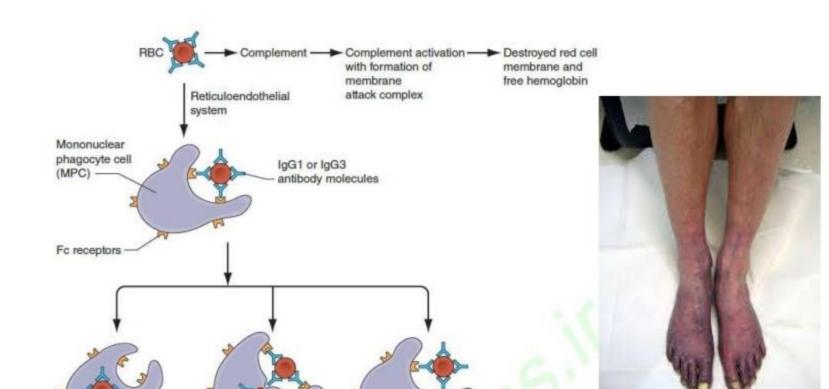

↑ MCHC with Normal blood counts

Acid glycerol Test

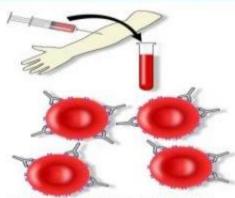
↑ Osmotic fragility

- Rx:
 - No causal treatment
 - Splenectomy
 - Mild cases : Defer Splenectomy
 - Moderate cases : delay until puberty
 - Sever cases : delay until 4-6 years of age
 - Anti pneumococcal vaccination before surgery

G6PD Deficiency

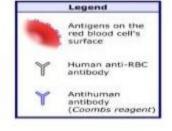


G6PD Deficiency


- Diagnosis :
 - DNA testing
 - During hemolytic attack quantitative test done for heterozygotes and hemi zygotes
- Rx :
 - No cure

Anemia + Splenomegaly + Jaundice

Warm Ab disease	Cold Ab disease
 Ig G1/G3 mediated 37°C Extravascular hemolysis Phagocytosis Fragmentation Cytotoxicity 	 Ig M mediated 0-4°C Intravascular hemolysis Membrane attacking complex



Direct Coombs test / Direct antiglobulin test

Blood sample from a patient with immune mediated haemolytic anaemia: antibodies are shown attached to antigens on the RBC surface. The patient's washed RBCs are incubated with antihuman antibodies (Coombs reagent). RBCs agglutinate: antihuman antibodies form links between RBCs by binding to the human antibodies on the RBCs.

Positive test result

- Medical Emergency, needs transfusion.
- Abs are commonly non specific against 'e' Ag of Rh system.
- So all most all the blood groups will be incompatible
- Start incompatible blood transfusion to keep the pt alive (with hold when condition improves)

PNH

Hemolysis + Pancytopenia + Venous thrombosis

• Classical :

Early morning bloody urine

- Recurrent severe abdominal pain (thrombotic event)
- Acute hepatomegaly, ascites without liver or cardiac disease
- MC COD · Venous thrombosis > Infections

PNH

- Reticulocytosis (up to 400,000/μL)
- ↑ MCV, Normo-Macrocytic
- Signs of Hemolysis
- Signs of Iron def (persistent loss)
- BM : cellular with massive erythroid hyperplasia
- Definitive : 个susceptibility to complement
 - Sucroso homolysis (not roliable)

PNH

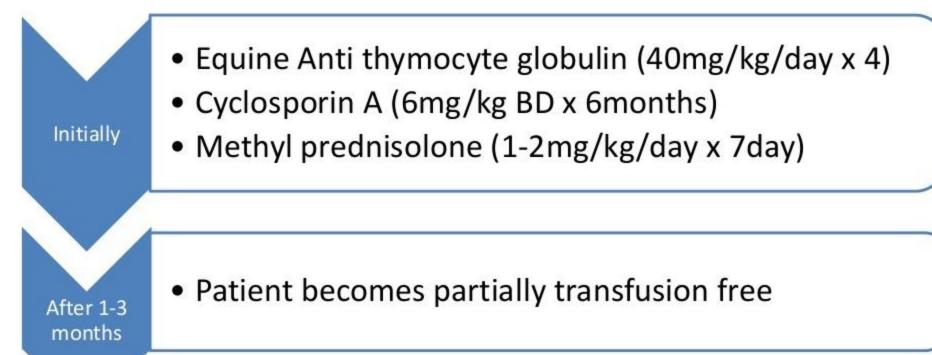
- Life long condition
- Filtered RBC (retain WBC)
- S. Iron maintanance
- Folate >3mg/d
- Never long term corticosteroids

- Sudden/ insidious Bleeding (MC 1st symp)
- Easy bruising, gum bleed, nose bleed, heavy menstrual flow, petechia, Hemorrhagic CVA, Retinal hemorrhage
- Symptoms of Anemia
- History of Drugs (allopurinol, gold, pencillamine)/ Viral illness/ Chemical exposure

Early hair greying – telomeronathy

 PS : large RBC, paucity of platelets & granulocytes, ↓↓↓ Retic count

- Immature myeloid forms Leukaemia/MDS
- Nucleated RBC Marrow fibrosis/ tumor invasion
 - Abnormal platelets MDS

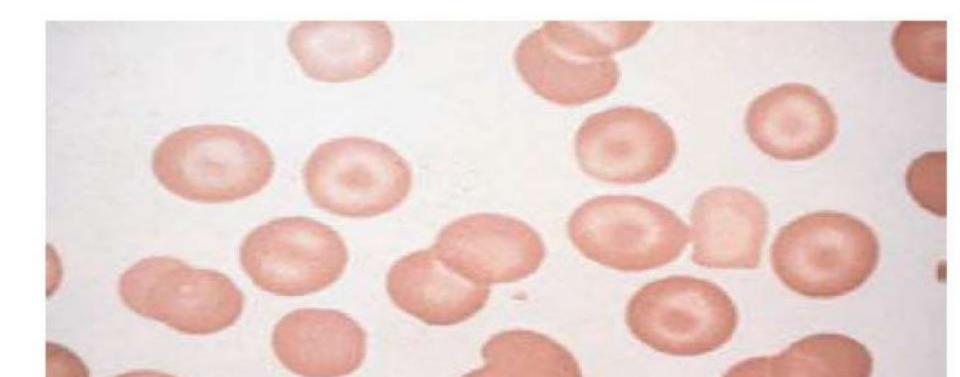

Aplastic anemia	Hypocellular MDS/Leukemia
 ↓ myeloid/ megakaryocytes Normal eyrthroblasts 	 个 myeloblasts Abnormal karyotype of erythroblasts

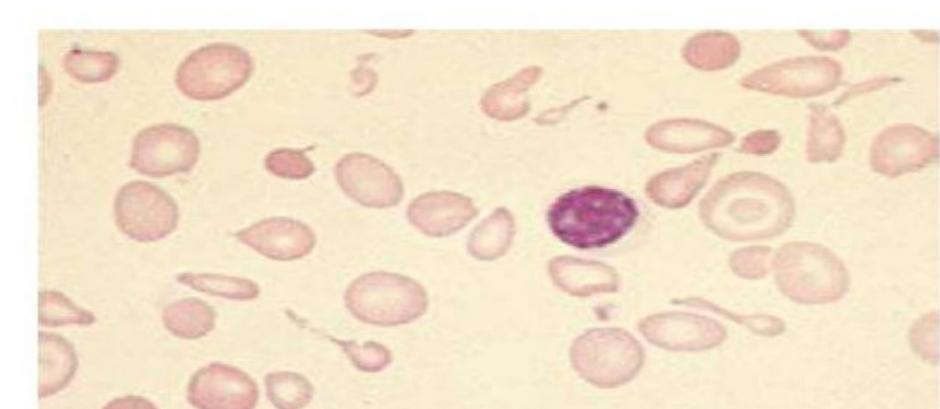
Aplastic anemia

Hairy cell leukaemia

Mild	 Supportive Epoetin/ Darbepoetin + Filgrastim/ Sargramostim Transfusions, AMD
Severe	
(<500/μL neutrophils	 <40 yrs + HLA matched donor = allogenic BMT
<20000/µL thrombocytes	 <40 yrs – HLA matched donor/ >40 yrs
<1% retic count	=Immunosuppressive therapy

Aplastic Anemia Immunosuppressive therapy

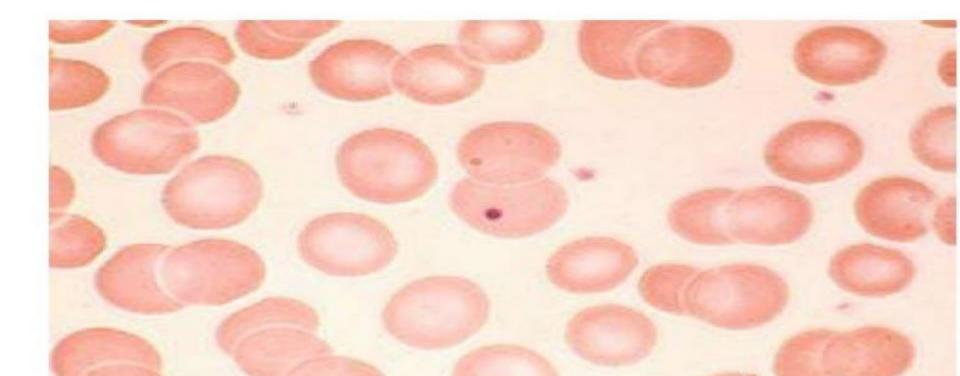


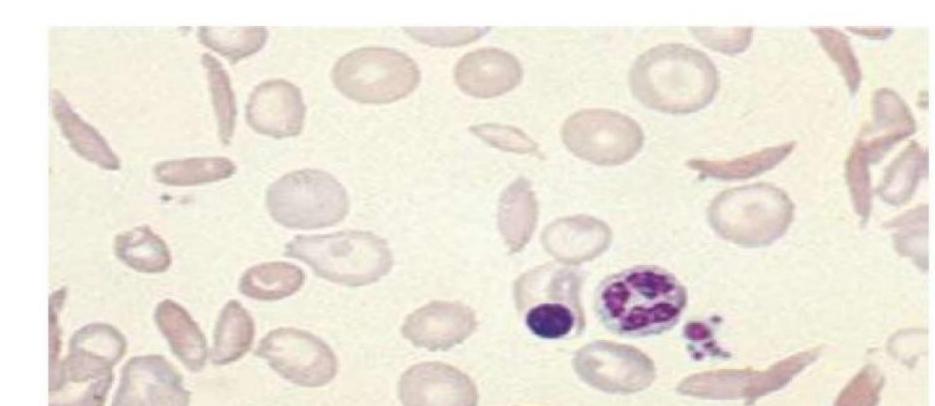

α- thalassemia	β- thalassemia
• (α , α/α ,-) Silent carrier	(β 0/ β 0 or β +/ β +) Thalassemia Major Transfusion dependent
 (α,-/α,-) type I α- thalassemia trait (α, α/-,-) type II α- thalassemia trait 	$(\beta + /\beta + with more \beta chain synth)$ T. Intermedia
Mild Microcytic anemia	Transfusion at aplastic crisis/ stress
 (α,-/-,-) Hb H disease 	(β/β0 or β/β+) Τ. Minor
Chronic hemolytic anemia of variable	Mild Microcytic hypochromic anemia

• C/f : Onset 4-6 months

- Stunted growth
- Bony deformities
- Hepatosplenomegaly
- Jaundice (gallstones, hepatitis)
- Thrombophilia
- Over load symptoms
 - Heart failure
 - 2023 2043 2023-204 202

- Microcytic hypochromic
- 60 70 fL MCV
- 22-32 % Hematocrit
- Target cells
- Acanthocytes (irregular spikes)
- Bacaphilic stippling (R thalaccomias)


• Electrophoresis (definitive)


Diesase	Electrophoresis finding
Hb H disease	10-40% migrating Hb
T. Minor	4-8% Hb A2 1-5% Hb F
T. Intermedia	0-30% Hb A 0-10% Hb A2

- Mild No Rx
- Hb H
 - Folate 1mg/day oral
 - No oxidative drugs/ iron
 - Transfusion
- Splenectomy (if hypersplenism is seen)
- Incomplete lations

- C/f : Onset 4 6 months
 - Chronic hemolytic jaundice
 - Aplastic crisis with viral illness
 - Acute painful syndrome (acute vaso occlusion)
 - Episodes last for hrs to days + low grade fever
 - Repeated occlusion
 - Enlarged heart
 - PAH
 - Cirrhosis liver
 - Osteonecrosis (salmonella > staph)
 - Renal papillary infarction (gross hematuria)
 - Retinopathy (similar to DM)

- Sickled cells (5 50%)
- Reticulocytes (10 25%)
- Howel jolley bodies (d/t hyposplenism)
- Target cells
- Leukocytosis (12000 -15000/cumm)
- Deactive thrembecuteric

Sickle cell anemia

- Allogenic BMT (Curative in child)
- Omega 3 FA
- Folate 1mg/day
- Transfusions
- Pneumococcal vaccination
- · Inch chalation

- Hydroxy Urea 500-750 mg/OD
- Painful crisis :
 - Hydration, NSAIDS, O2
- Vaso-occlusive/ Intractable pain/ Acute chest synd/ priapism/ stroke

THANK YOU