Arterial Blood Gas Analysis

Dr Umar

Overview

■ABG Sampling

- ☐ Interpretation of ABG
 - Gas Exchange
 - Acid Base status

Applications of ABG

- To document respiratory failure and assess its severity
- To monitor patients on ventilators and assist in weaning
- To assess acid base imbalance in critical illness
- To assess response to therapeutic interventions and mechanical ventilation
- To assess pre-oppatients

ABG – Procedure and Precautions

Where to place -- the options

Radial
Dorsalis Pedis
Femoral
Brachial

Excessive Heparin

- ➤ Ideally : Pre-heparinised ABG syringes
- Syringe FLUSHED with 0.5ml 1:1000 Heparin & emptied
- > DO NOT LEAVE EXCESSIVE HEPARIN IN THE SYRINGE

HEPARIN

DILUTIONAL **EFFECT**

HCO₃-pCO₂

ABG Syringe

- ➤ Risk of alteration of results ↑ with:
 - ➤ 1) ↑ size of syringe/needle
 - \triangleright 2) \downarrow **vol** of sample
- ✓ Syringes must have > 50% blood
- ✓ Use only 3ml or less syringe
- ✓ 25% lower values if 1 ml sample taken in 10 ml syringe (0.25 ml heparin in needle)

Air Bubbles

- \triangleright pO₂ 150 mm Hg & pCO₂ 0 mm Hg
 - Contact with AIR BUBBLES

> Seal syringe immediately after sampling

Body Temperature

- Affects values of pCO₂ and HCO₃ only
- ABG Analyser controlled for Normal Body temperatures

WBC Counts

- ➤ 0.01 ml O₂ consumed/dL/min
- ➤ Marked increase in high TLC/plt counts : ↓ pO2
- Chilling / immediate analysis

ABG Syringe must be transported earliest via COLD CHAIN

Change/10 min	Uniced 37°C	Iced 4°C
рН	0.01	0.001
pCO ₂	1 mm Hg	0.1 mm Hg
pO ₂	0.1%	0.01%

ABG Equipment

□3 electrode system that measures three fundamental variables - pO₂, pCO₂ and pH

□ All others parameters such as HCO₃⁻ computed by software using standard formulae

Interpretation of ABG

- ☐ Gas exchange
- □ Acid Base Status

Gas exchange

Assessment Of Gas exchange

- □ PaO₂ vs SpO₂
- □ Alveolar-arterial O₂ gradient
- PaO₂/FiO₂ ratio
- PaCO₂

Determinants of PaO₂

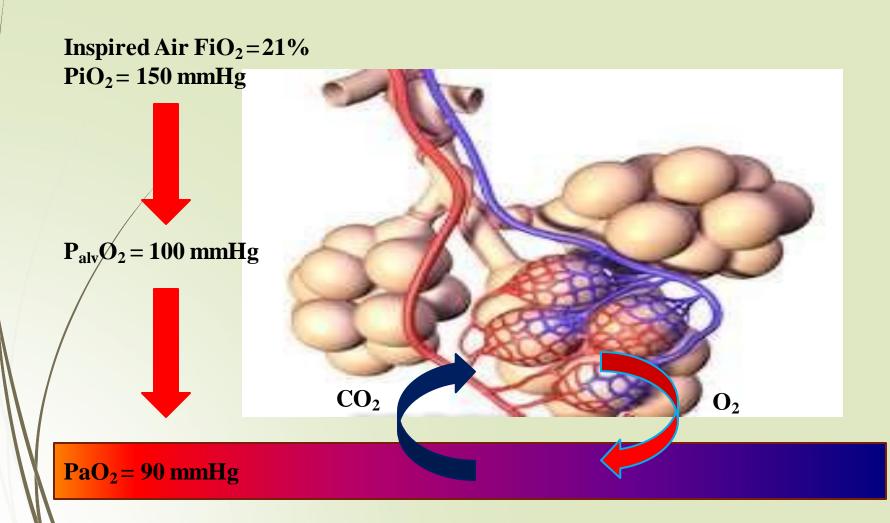
 PaO_2 is dependant upon \longrightarrow Age, FiO_2 , P_{atm}

As $Age \uparrow$ the expected $PaO_2 \downarrow$

• $PaO_2 = 109 - 0.4$ (Age)

As FiO_2 the expected PaO_2

- Alveolar Gas Equation:
 - $P_AO_2 = (P_B P_{H_20}) \times FiO_2 pCO_2/R$

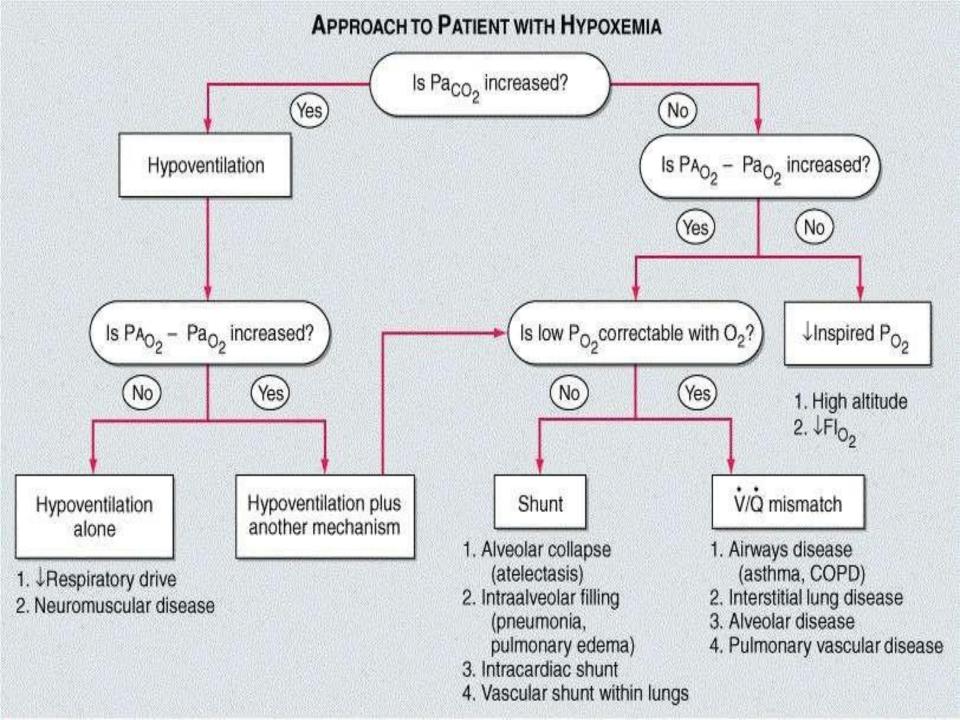

Hypoxemia

- Normal PaO₂: 95 100 mm Hg
- Mild Hypoxemia: PaO₂60 80 mm Hg
- Moderate Hypoxemia: PaO₂ 40 60 mm Hg
 tachycardia, hypertension, cool extremities
- Severe Hypoxemia : PaO₂ < 40 mm Hg –
 severe arrhythmias, brain injury, death

Alveolar-arterial O₂ gradient

- P(A-a)O₂ is the alveolar-arterial difference in partial pressure of oxygen
- \circ PAO₂ = 150 PaCO₂/RQ
- Normal range : 5 25 mm Hg (increases with age)
- Increase P(A-a)O₂: lung parenchymal disease

PaO₂/FiO₂ratio

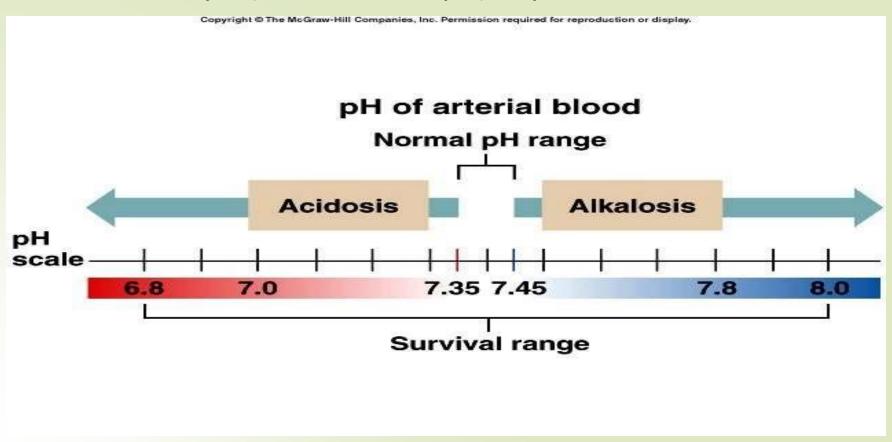

Berlin criteria for ARDS severity

<i>PaO₂/ FiO₂</i> ratio	Inference
200 - 300 mm Hg	Mild ARDS
100 - 200 mm Hg	Moderate ARDS
< 100 mm Hg	Severe ARDS

ARDS is characterized by an acute onset within 1 week, bilateral radiographic pulmonary infiltrates, respiratory failure not fully explained by heart failure or volume overload, and a PaO₂/FiO₂ ratio < 300 mm Hg

Hypercapnia

- PaCO₂ is directly proportional to CO₂ production and inversely proportional to alveolar ventilation
- Normal PaCO₂ is 35 45 mm Hg



Acid Base Status

•Nano equivalent =1×10⁻⁹

 \bullet [H⁺] = 40 nEq/L (16 to 160 nEq/L) at pH-7.4

Henderson-Hasselbalch Equation

Correlates metabolic & respiratoryregulations

$$HCO_{3}^{-}$$
 $pH = pK + log ------$
.03 x [PaCO₂]

• Simplified

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

First line of defense against pH shift

Chemical buffer system

Bicarbonate buffer system

Phosphate buffer system

Protein buffer system

Second line of defense against pH shift

Physiological buffers

Respiratory mechanism (CO₂ excretion)

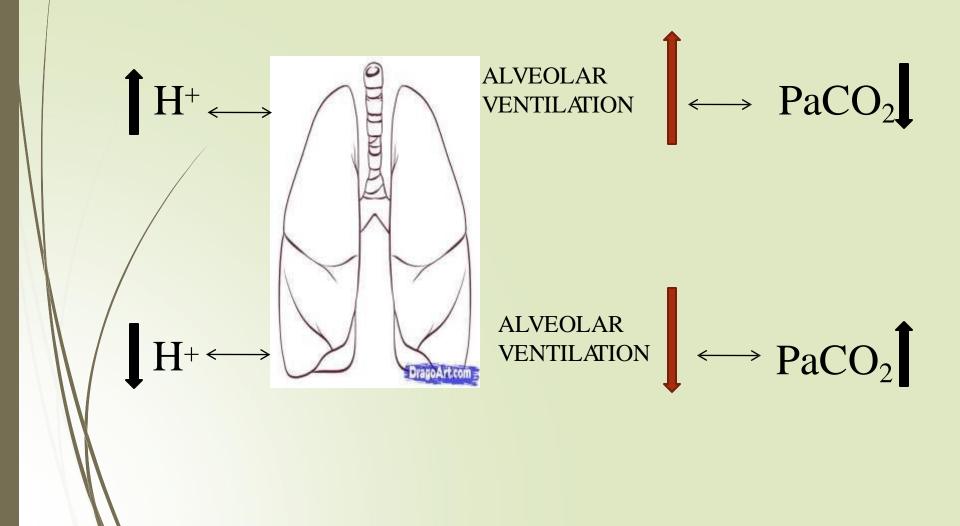
Renal mechanism (H+ excretion)

Bicarbonate Buffer System

$$CO_2 + H_2O \stackrel{carbonic anhydrase}{\longleftrightarrow} H_2CO_3 \longleftrightarrow H^+ + HCO_3^-$$

Acidosis: Acid = H^+

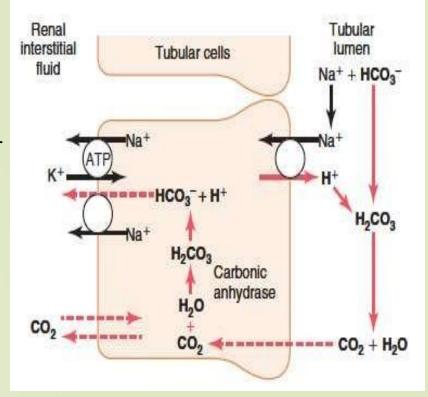
$$H^+ + HCO_3^- \longrightarrow H_2CO_3 \longrightarrow CO_2 + H_2O_3$$

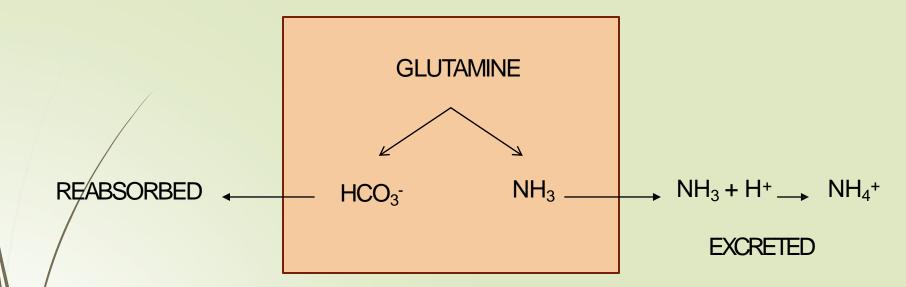

Alkalosis: Alkali + Weak Acid = H_2CO_3

$$CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow HCO_3^- + H^+$$

+

Alkali


Respiratory Regulation


Renal Regulation

Kidneys control the acid-base balance by excreting either a basic or an acidic urine

- Excretion of HCO₃⁻
- Regeneration of HCO₃⁻
 with excretion of H⁺

Excretion of excess H⁺ & generation of new HCO₃⁻: The Ammonia Buffer System

• In **chronic acidosis**, the dominant mechanism of acid eliminated **excretion of NH**₄

Response...

Bicarbonate Buffer System

Acts in few seconds

Respiratory Regulation

 Starts within minutes good response by 2hrs, complete by 12-24 hrs

Renal Regulation

Starts after few hrs, complete by 5-7 days

Abnormal Values

pH < 7.35

 Acidosis (metabolic and/or respiratory)

pH > 7.45

 Alkalosis (metabolic and/or respiratory)

$paCO_2 > 45 mm Hg$

Respiratory acidosis
 (alveolar hypoventilation)

$paCO_2 < 35 mm Hg$

Respiratory alkalosis
 (alveolar hyperventilation)

$HCO_3^- < 22 \text{ meq/L}$

Metabolic acidosis

$HCO_3^- > 26 \text{ meq/L}$

Metabolic alkalosis

Simple Acid-Base Disorders

Simple acid-base disorder – a single primary process of acidosis or alkalosis with or without compensation

Compensation...

The body always tries to normalize the pH so...

- pCO₂ and HCO₃⁻ rise & fall together in simple disorders
- Compensation never overcorrects the pH
- Lack of compensation in an appropriate time defines a 2nd disorder
- Require normally functioning lungs and kidneys

Characteristics of 1° acid-base disorders

DISORDER	PRIMARY RESPONSE			COMPENSATORY RESPONSE
Metaboli c acidosis	↑ [H+]	↓ PH	↓ HCO ₃ -	↓ pCO ₂
Metaboli c alkalosis	↓ [H+]	↑ PH	↑ HCO ₃ -	↑ pCO ₂
Respirato ry y acidosis	↑ [H+]	↓ PH	↑ pCO2	↑ HCO ₃ -
Respirato rv v	↓ [H+]	↑ PH	↓ pCO2	↓ HCO ₃ -

Disorder Compensatory response Respiratory acidosis

↑ HCO₃-1 mEq/L per 10 mm Hg ↑ pCO₂ Acute

Chronic \uparrow HCO₃-3.5 mEq/L per 10 mm Hg \uparrow pCO₂

Respiratory alkalosis

Chronic

Metabolic acidosis Metabolic alkalosis

Acute

J HCO₃-2 mEq/L per 10 mm Hg J pCO₂

J HCO₃-5 mEq/L per 10 mm Hg J pCO₂ \downarrow pCO₂ 1.3 mm Hg per 1 mEq/L \downarrow HCO₃⁻ (Limit of CO₂ is 10 mm Hg)

↑ pCO₂ 0.7 mm Hg per 1 mEq/L ↑ HCO₃-(Limit of CO₂ is 55 mm Hg)

Mixed Acid-base Disorders

Presence of more than one acid base disorder simultaneously

Clues to a mixed disorder:

- Normal pH with abnormal HCO₃ or pCO₂
- pH changes in an opposite direction for a known primary disorder

Anion Gap

$AG = [Na^+] - [Cl^- + HCO_3^-]$

- Elevated anion gap represents metabolic acidosis
- Normal value: 12 ± 4 mEq/L
- Major unmeasured anions
 - albumin
 - phosphates
 - sulfates
 - organic anions

Unmeasure Unmeasured d cations anions CI-Na⁺ HCO₃-**Anions Cations**

Anion Gap = Metabolic Acidosis

Increased Anion Gap

- Diabetic Ketoacidosis
- Chronic Kidney Disease
- Lactic Acidosis
- Alcoholic Ketoacidosis
- Aspirin Poisoning
- Methanol Poisoning
- Ethylene Glycol Poisoning
- Starvation

Normal Anion Gap

- Diarrhea
- Renal Tubular Acidosis
- Addisons Disease
- Carbonic Anhydrase Inhibitors

Delta Gap

- The difference between patient's AG & normal AG
- The coexistence of 2 metabolic acid-base disorders may be apparent

Delta gap = Anion gap – 12
Delta Gap +
$$HCO_3 = 22-26 mEq/l$$

- ► If >26, consider additional metabolic alkalosis
- ➤ If <22, consider additional non AG metabolic acidosis

STEP-BY-STEP ANALYSIS OF ACID-BASE STATUS

Look at the pO₂ (<80 mm Hg) and O₂ saturation (<90%) for hypoxemia

2. Look at the **pH**

□ < 7.35 : ACIDOSIS

→ 7.45 : ALKALOSIS

□ 7.35 – 7.45 : normal/mixed disorder

3. Look at pCO₂

→ 25 mm Hg : Increased (Acidic)

< 35 mm Hg : Decreased (Alkalotic)</p>

4. Look at the *HCO*₃-

→ 26 mEq/L: Increased (Alkalotic)

< 22 mEq/L : Decreased (Acidic)</p>

5. Determine the acid-base disorder, match either the pCO₂ or the HCO₃ with the pH

6. *Compensation*... are the CO_2 or HCO_3 of opposite type?

Is the compensation adequate??

METABOLIC DISORDER PCO_{2expected}

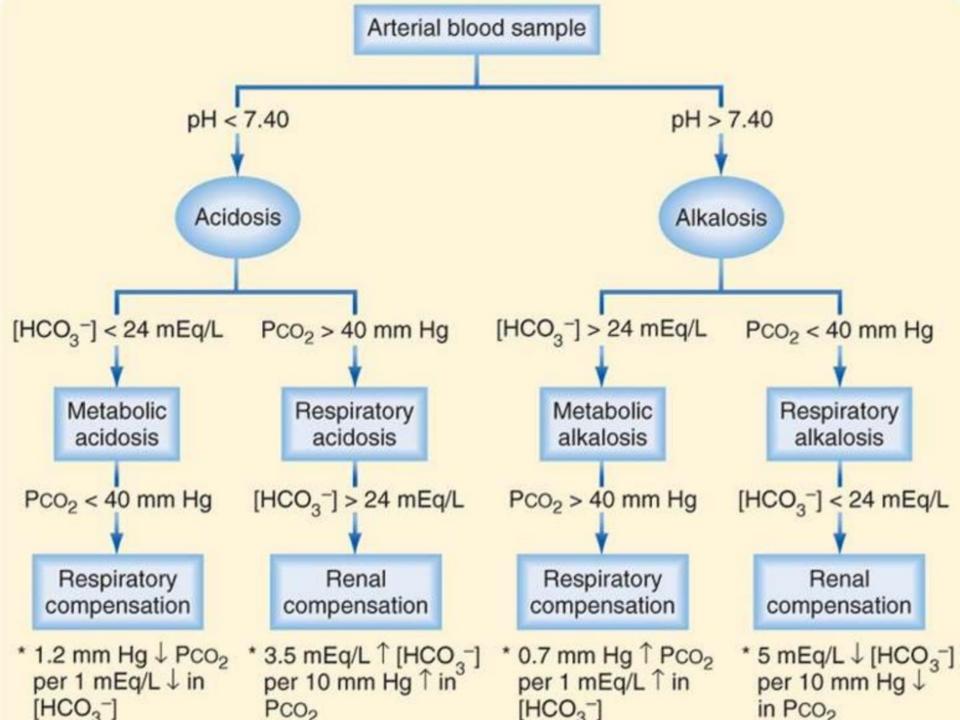
PCO₂measured ≠ PCO₂expected → MIXED
 DISORDER

RESPIRATORY DISORDER

pH_{expected}

pH_m ≠ pH_e range → MIXED DISORDER

7. Calculate the *anion gap* if it is more there is Metabolic acidosis


 $AG = [Na^+] - [Cl^- + HCO_3^-]$

8. Does the anion gap explain the change in HCO_3^- ?

Calculate Delta gap

(rule out co-existence of 2 acid-base disorders)

9. Examine the patient to determine whether the clinical signs are compatible with the acid-base analysis...

Treat the patient not the ABG!!!

Thank you...